Activation of REST/NRSF target genes in neural stem cells is sufficient to cause neuronal differentiation.

نویسندگان

  • Xiaohua Su
  • Sei Kameoka
  • Susan Lentz
  • Sadhan Majumder
چکیده

REST/NRSF is a transcriptional repressor that acts at the terminal stage of the neuronal differentiation pathway and blocks the transcription of several differentiation genes. REST/NRSF is generally downregulated during induction of neuronal differentiation. The recombinant transcription factor REST-VP16 binds to the same DNA binding site as does REST/NRSF but functions as an activator instead of a repressor and can directly activate the transcription of REST/NRSF target genes. However, it is not known whether REST-VP16 expression is sufficient to cause formation of functional neurons from neural stem cells (NSCs). Here we show that regulated expression of REST-VP16 in a physiologically relevant NSC line growing under cycling conditions converted the cells rapidly to the mature neuronal phenotype. Furthermore, when grown in the presence of retinoic acid, REST-VP16-expressing NSCs activated their target, as well as other differentiation genes that are not their direct target, converting them to the mature neuronal phenotype and enabling them to survive in the presence of mitotic inhibitors, which is a characteristic of mature neurons. In addition, these neuronal cells were physiologically active. These results showed that direct activation of REST/NRSF target genes in NSCs with a single transgene, REST-VP16, is sufficient to cause neuronal differentiation, and the findings suggested that direct activation of genes involved in the terminal stage of differentiation may cause neuronal differentiation of NSCs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Conversion of myoblasts to physiologically active neuronal phenotype.

Repressor element 1 (RE1)-silencing transcription factor (REST)/neuron-restrictive silencer factor (NRSF) can repress several terminal neuronal differentiation genes by binding to a specific DNA sequence (RE1/neuron-restrictive silencer element [NRSE]) present in their regulatory regions. REST-VP16 binds to the same RE1/NRSE, but activates these REST/NRSF target genes. However, it is unclear wh...

متن کامل

The master negative regulator REST/NRSF controls adult neurogenesis by restraining the neurogenic program in quiescent stem cells.

Transcriptional regulation is a critical mechanism in the birth, specification, and differentiation of granule neurons in the adult hippocampus. One of the first negative-acting transcriptional regulators implicated in vertebrate development is repressor element 1-silencing transcription/neuron-restrictive silencer factor (REST/NRSF)--thought to regulate hundreds of neuron-specific genes--yet i...

متن کامل

Genome-wide identification of target genes repressed by the zinc finger transcription factor REST/NRSF in the HEK 293 cell line.

Transcriptional repression is as important as transcriptional activation in establishing cell-type specific patterns of gene expression. RE1-silencing transcription factor (REST), also known as neuronal restrictive silencing factor (NRSF), is a transcriptional regulator that represses a battery of neuronal differentiation genes in non-neuronal cells or in neural progenitor cells by binding to a...

متن کامل

Abnormal expression of REST/NRSF and Myc in neural stem/progenitor cells causes cerebellar tumors by blocking neuronal differentiation.

Medulloblastoma, one of the most malignant brain tumors in children, is thought to arise from undifferentiated neural stem/progenitor cells (NSCs) present in the external granule layer of the cerebellum. However, the mechanism of tumorigenesis remains unknown for the majority of medulloblastomas. In this study, we found that many human medulloblastomas express significantly elevated levels of b...

متن کامل

High neuronal/astroglial differentiation plasticity of adult rat hippocampal neural stem/progenitor cells in response to the effects of embryonic and adult cerebrospinal fluids

Hippocampal neural stem/progenitor cells (hipp-NS/PCs) of the adult mammalian brain are important sources of neuronal and gial cell production. In this study, the main goal is to investigate the plasticity of these cells in neuronal/astroglial differentiations. To this end, the differentiation of the hipp-NS/PCs isolated from 3-month-old Wistar rats was investigated in response to the embryonic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular and cellular biology

دوره 24 18  شماره 

صفحات  -

تاریخ انتشار 2004